skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hashmy, Yousaf"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Under the trend of deeper renewable energy integration, active distribution networks are facing increasing uncertainty and security issues, among which the arcing fault detection (AFD) has baffled researchers for years. Existing machine learning based AFD methods are deficient in feature extraction and model interpretability. To overcome these limitations in learning algorithms, we have designed a way to translate the non-transparent machine learning prediction model into an implementable logic for AFD. Moreover, the AFD logic is tested under different fault scenarios and realistic renewable generation data, with the help of our self-developed AFD software. The performance from various tests shows that the interpretable prediction model has high accuracy, dependability, security and speed under the integration of renewable energy. 
    more » « less